最近在互联网爆火的AIGC到底是什么?

1、AIGC是什么?

AIGC 即 AI Generated Content,利用人工智能技术来生成内容,它被认为是继PGC、UGC之后的新型内容创作方式。2022年AIGC高速发展,这其中深度学习模型不断完善、开源模式的推动、大模型探索商业化的可能,成为AIGC发展的“加速度”。

2、AIGC有哪些应用价值?

AIGC将有望成为数字内容创新发展的新引擎。1)AIGC能够以优于人类的制造能力和知识水平承担信息挖掘、素材调用、复刻编辑等基础性机械劳动,从技术层面实现以低边际成本、高效率的方式满足海量个性化需求。2)AIGC能够通过支持数字内容与其他产业的多维互动、融合渗透从而孕育新业态新模式。3)助力“元宇宙”发展。通过AIGC加速复刻物理世界、进行无限内容创作,从而实现自发有机生长。

图片[1]_最近在互联网爆火的AIGC到底是什么?_CHUANG.IT

1)AIGC+传媒:写稿机器人、采访助手、视频字幕生成、语音播报、视频锦集、人工智能合成主播

2)AIGC+电商:商品3D模型、虚拟主播、虚拟货场

3)AIGC+影视:AI剧本创作、AI合成人脸和声音、AI创作角色和场景、AI自动生成影视预告片

4)AIGC+娱乐:AI换脸应用(如FaceAPP、ZAO)、AI作曲(如初音未来虚拟歌姬)、AI合成音视频动画

5)AIGC+教育:AI合成虚拟教师、AI根据课本制作历史人物形象、AI将2D课本转换为3D

6)AIGC+金融:通过AIGC实现金融资讯、产品介绍视频内容的自动化生产,通过AIGC塑造虚拟数字人客服

7)AIGC+医疗;AIGC为失声者合成语言音频、为残疾人合成肢体投影、为心理疾病患者合成医护陪伴

8)AIGC+工业:通过AIGC完成工程设计中重复的低层次任务,通过AIGC生成衍生设计,为工程师提供灵感

3、AIGC商业模式如何?

1)作为底层平台接入其他产品对外开放,按照数据请求量和实际计算量计算:GPT-3对外提供API接口,采用的四种模型分别采用不同的按量收费方式

2)按产出内容量收费:包括DALL·E、Deep Dream Generator等AI图像生成平台大多按照图像张数收费

3)直接对外提供软件:例如个性化营销文本写作工具AX Semantics则以约1900人民币/月的价格对外出售,并以约4800欧元/月的价格提供支持定制的电子商务版本。大部分C端AGC工具则以约80人民币/月的价格对外出售

4)模型训练费用:适用于NPC训练等个性化定制需求较强的领域

5)根据具体属性收费:例如版权授予(支持短期使用权、长期使用权、排他性使用权和所有权多种合作模式,拥有设计图案的版权)、是否支持商业用途(个人用途、企业使用、品牌使用等)、透明框架和分辨率等

4、AIGC的行业门槛及壁垒是什么?

1)打造一体化解决方案服务能力:AIGC本质上提供的是内容的生成工具,和传统的内容辅助编辑逻辑是相同的。采集、生产、媒资管理、分发消费等视频整个生命周期,一般都需要覆盖内容生成的全生命周期。

2)与行业的深度绑定关系:通过和行业形成深度绑定关系,接入相关平台或底层系统的,与原来的内容载体建立良好的合作关系,除去说明场景可行性外,还需要强调对方在基础架构上的配合意愿。

3)构建业务闭环:创作型的工具如何得到反馈的手段,需要新的模式形成闭环。需要从“拼接式”(需要大量的人工标注数据,只能针对具体任务,不会自我成长)到“进化式”(创造特定条件和核心能力,使之能够完成通用任务并自我成长),并与用户增加对话轮次、建立情感链接。

5、AIGC技术处于什么发展阶段?

2021年之前,AIGC生成的主要是文字,而新一代模型可以处理的格式内容包括:文字、语音、代码、图像、视频、机器人动作等等。AIGC被认为是继专业生产内容(PGC,professional-generated content)、用户生产内容(UGC,User-generated content)之后的新型内容创作方式,可以在创意、表现力、迭代、传播、个性化等方面,充分发挥技术优势。

2022年:AIGC高速发展,其中深度学习模型不断完善、开源模式的推动、大模型探索商业化的可能,成为AIGC发展的“加速度”。

6、AIGC的发展面临什么挑战?

AIGC在引发全球关注的同时,知识产权、技术伦理将面临诸多挑战和风险。同时AIGC距离通用人工智能还有较大的差距。

1)知识产权争议。AIGC的飞速发展和商业化应用,除了对创作者造成冲击外,也对大量依靠版权为主要营收的企业带来冲击。

2)关键技术难点。AIGC距离通用人工智能还有较大差距,当前热门的AIGC系统虽然能够快速生成图像,但是这些系统未必能够真正理解绘画的含义,从而能够根据这些含义进行推理并决策。

3)创作伦理问题。部分开源的AIGC项目对生成的图像监管程度较低,数据集系统利用私人用户照片进行AI训练,侵权人像图片进行训练的现象屡禁不止。一些用户利用AIGC生成虚假名人照片等违禁图片,甚至会制作出暴力和性有关的画作。由于AI本身尚不具备价值判断能力,一些平台已经开始进行伦理方面的限制和干预,但相关法律法规仍处于真空阶段。

7、如何看待AIGC的未来趋势?

据李彦宏判断,未来AIGC将走过三个发展阶段:助手阶段、协作阶段、原创阶段。 

在第一阶段,AIGC将辅助人类进行内容生产;

第二阶段,AIGC以虚实并存的虚拟人形态出现,形成人机共生的局面;

第三阶段则是原创阶段,AIGC将独立完成内容创作。Gartner预计,到2025年,生成式人工智能将占所有生成数据的10%。

推动这一变化发生的驱动力在于:

1)核心技术升级不断发展。AIGC的三大基础能力包括内容孪生、内容编辑、内容创作,将随着产业发展而逐渐升级。

2)产品类型逐渐丰富。人工智能的不断发展及推进,也将使AIGC模态不再仅仅局限于文本、音频、视觉三种基本形态。嗅觉、触觉、味觉、情感等多重信息感知和认知能力将以数字化的形式传输并指导人工智能进行内容创作,甚至创造出酸甜苦辣外的另一种味道。

3)场景应用趋于多元。目前,AIGC已经在多个领域得到广泛应用,如金融、传媒、文娱、电商等,未来应用场景会进一步多元化。除应用场景的横向扩展外,场景与场景的融合交互也是未来的发展趋势之一。

4)生态建设日益完善。技术研发的不断创新将强有力地推动内容创作,提高生成内容质量,使内容更接近人类智力水平和审美标准,同时应用于各类行业各种场景。AIGC的繁荣发展将促进资产服务快速跟进,通过对生成内容的合规评估、资产管理、产权保护、交易服务等构成AIGC的完整生态链,并进行价值重塑,充分释放其商业潜力。

8、AIGC未来市场空间有多大?

随着标注数据累积、技术架构完善、内容行业对丰富度/事实性/个性化的要求越来越高,AIGC行业即将被推向前台。

在未来2-3年间,AIGC的初创公司和商业落地案例将持续增加。目前由人工智能生成的数据占所有数据的1%不到,根据Gartner预测,到2025年,人工智能生成数据占比将达到10%。根据《Generative AI:A Creative New World》的分析,AIGC有潜力产生数万亿美元的经济价值。

9、AIGC的产业链分布如何?

我国的AIGC行业尚未发展成型,目前,AIGC代表公司较少,且上游还有众多欠缺。

国内的AIGC场景开发较少:在我国,由于技术发展不足以及投资环境的影响,AIGC大多被作为公司的部分业务、乃至相对边缘化的功能进行研发开发,独立运行的初创公司数量明显少于国外,大部分细分赛道的初创玩家在5家以下,这也间接导致了国内的AIGC场景开发较少。

AIGC应用场景深度不足:国内布局最多的赛道是写作和语音合成领域,虚拟人赛道刚刚开始兴起基本均停留在内容领域。而在国外延展领域得到了更为充分的挖掘,例如个性化文本生成、合成数据等赛道均是重点布局领域。此类业务拓展的综合性要求较高,需要客户方的数字化程度以及对对应行业的充分了解。

© 版权声明
THE END
喜欢就支持一下吧
点赞13 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容